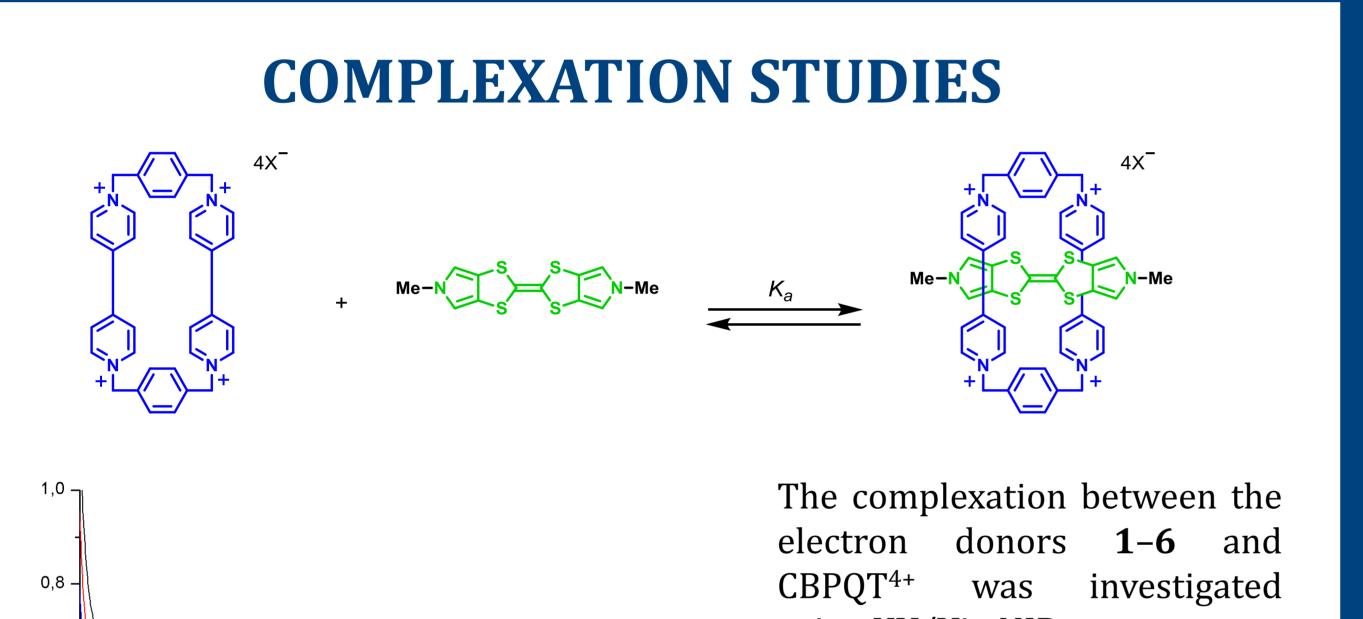
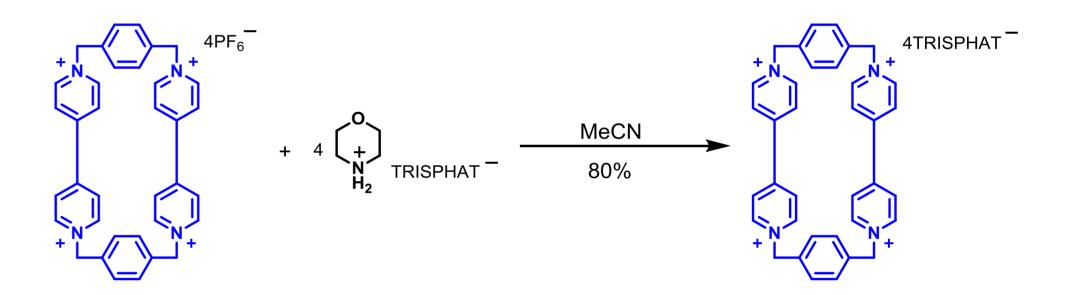
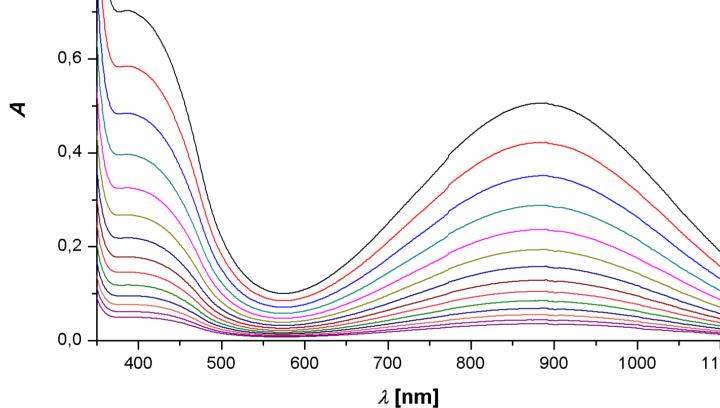

Anions Effect on the Complexation between Electron Donors and Cyclobis(paraquat-*p*-phenylene)

Morten Jensen⁺, Sissel S. Andersen⁺, Anne Sørensen⁺, Eigo Miyazaki⁺, Kazuo Takimiya⁺, Bo W. Laursen⁺, Amar H. Flood⁺ and Jan O. Jeppesen⁺


[†]Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
[‡]Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
[§]Nano-Science Center, University of Copenhagen, København Ø, 2100, Denmark
*Chemistry Department, Indiana University, Bloomington, IN 47405, USA
Email: mortenj@sdu.dk

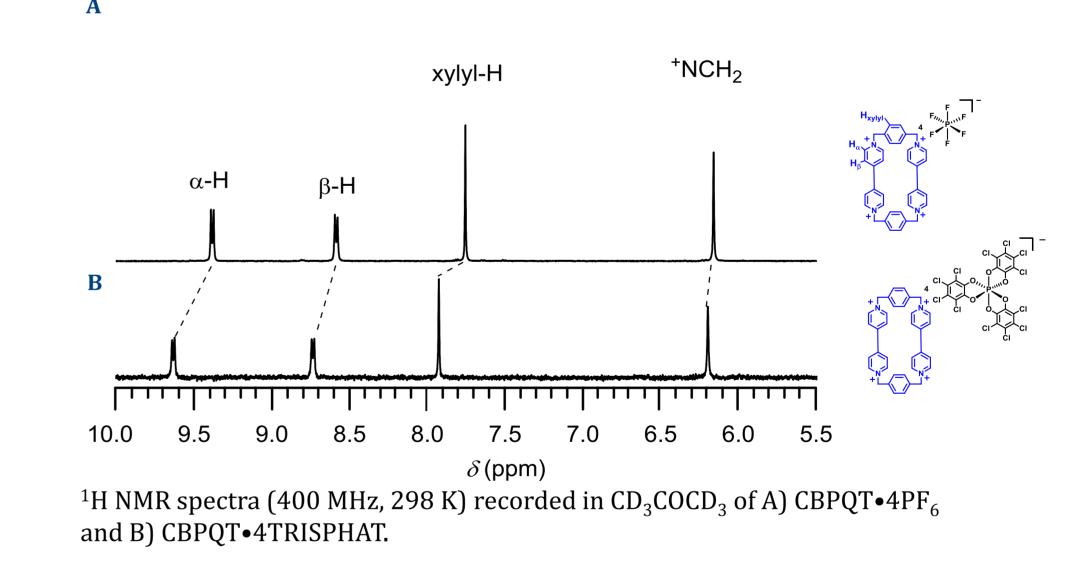

The electron accepting macrocyclic tetracationic host cyclobis(paraquat-*p*-phenylene) (CBPQT⁴⁺) has been used intensively as the ring component for the construction of switchable donor-acceptor bistable [2]catenanes^{1,2} and [2]rotaxanes.³ In these constructions, derivatives of the electron donating tetrathiafulvalene (TTF) and 1,5-dioxynaphtalene (DNP) have been widely used as guests.

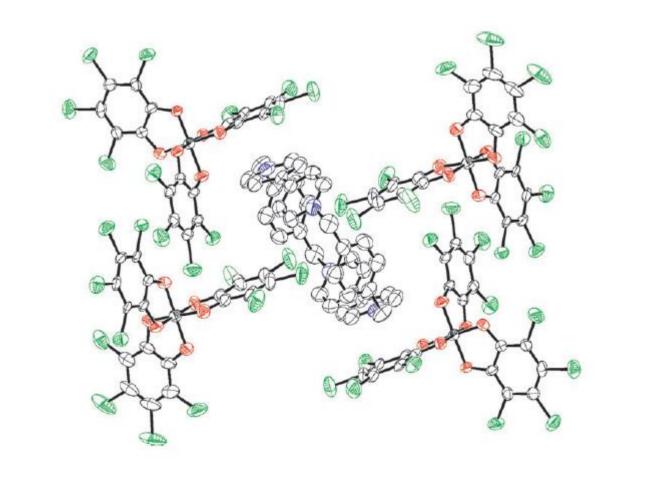

It will be shown that the complexation between an electron donor and CBPQT⁴⁺ is not only influenced by the nature of the donor, but also by the nature of the counteranions.⁴ Binding studies between CBPQT⁴⁺ and derivatives of TTF and DNP in the presence of differently sized counteranions ($X^- = TRISPHAT^-$, PF_6^- , and ClO_4^-) reveal that both the nature and the concentration of the anion have a large impact on the association strength of the resulting host-guest complex.

SYNTHESIS OF CBPQT•4TRISPHAT

CHARACTERIZATION

using UV/Vis-NIR spectroscopy. The absorbance was measured at λ_{max} for the CT absorption band at various concentration, and was used to calculate the binding constant K_a of the donor-acceptor complex.


UV/Vis-NIR spectra of a 1:1 mixture of **3** and CBPQT•4TRISPHAT recorded in MeCN at 298 K. The concentration has been reduced with 1/6 between each spectrum.


RESULTS

Comparison of binding constants (K_a) and derived free energies (ΔG°) between A) the electron donors **1–6** and CBPQT•4PF₆ and CBPQT•4TRISPHAT and B) **2**⊂CBPQT•4PF₆ + 0.1 M *n*-Bu₄N•PF₆ and **2**⊂CBPQT•4PF₆ + 0.1 M *n*-Bu₄N•ClO₄ determined by absorption spectroscopy at 298 K in MeCN using the TTF/ CBPQT⁴⁺ (**1–4**) or the DNP/ CBPQT⁴⁺ (**5–6**) CT bands as probes.

Α	$CBPQT \bullet 4PF_6$		CBPQT	CBPQT•4TRISPHAT	
	<i>K</i> _a (M ⁻¹)	Δ <i>G</i> ° (kcal mol⁻	¹) K_{a} (M ⁻¹)	ΔG° (kcal mol ⁻¹)	
1	15 000 ± 2300	-5.70 ± 0.09	37 000 ± 6200	-6.23 ± 0.10	
2	13 000 ± 900	-5.61 ± 0.04	20 000 ± 900	-5.87 ± 0.03	
3	84 000 ± 3000	-6.72 ± 0.03	176 000 ± 12 000	-7.16 ± 0.05	
4	231 000 ± 12 200	-7.32 ± 0.04	286 300 ± 30 000	-7.45 ± 0.07	
5	2000 ± 100	-4.50 ± 0.04	< 10	< 1.4	
6	$35\ 100 \pm 1500$	-6.21 ± 0.03	64 700 ± 7200	-6.57 ± 0.07	
B			<i>K</i> _a (M ⁻¹)	ΔG° (kcal mol ⁻¹)	
$2 \subset \text{CBPQT} \bullet 4\text{PF}_6 + 0.1 \text{ M } n - \text{Bu}_4 \text{N} \bullet \text{PF}_6$			5600 ± 100	-5.11 ± 0.02	
2 \subset CBPQT•4PF ₆ +0.1 M <i>n</i> -Bu ₄ N•ClO ₄			3700 ± 100	-4.87 ± 0.02	

The protons in CBPQT⁴⁺ are less shielded when TRISPHAT⁻ is the counterion as compared to the situation where PF_6^- is the counterion. Consequently, all resonances of the protons in CBPQT⁴⁺ are shifted downfield in the ¹H NMR spectrum. This observation can be explained by the different size of the two ions. The bigger TRISPHAT⁻ increases the distance between itself and CBPQT⁴⁺. Therefore, the interaction between TRISPHAT⁻ and CBPQT⁴⁺ is weaker than the interaction between PF₆⁻ and CBPQT⁴⁺.

The X-ray crystal structure of CBPQT•4TRISPHAT shows that the cavity of CBPQT⁴⁺ is occupied by four chlorine atoms from TRISPHAT⁻, which have to be expelled from the cavity before any

electron donor can bind.

CONCLUSION

CBPQT•4TRISPHAT has been synthesized and characterized and it has been shown that it is a better host for the electron donating TTF derivatives 1-4 as compared to CBPQT•4PF₆. Regarding the DNP derivatives (**5**–**6**), the results support the hypothesis that binding between DNP derivatives and CBPQT⁴⁺ is not primarily governed by electron donation but by C-H···· π interactions. C-H ···O hydrogen bonds could be the reason that the binding constant generally is larger for **6** than for **5**. Since there is more room for the glycol chains when TRISPHAT⁻ is the counterion, the entropy is bigger and the binding constant will increase compared to the case where PF₆⁻ is the counterion. Furthermore, in the presence of *n*-Bu₄N•PF₆ and *n*-Bu₄N•ClO₄, the formation of tighter ion-pairs significantly reduces the hosting ability of CBPQT⁴⁺ toward the MPTTF derivative **2**. From all this, it can be concluded that larger counteranions give rise to stronger host-guest donor-acceptor complexes. This knowledge is important regarding future design of mechanically interlocked systems based on CBPQT⁴⁺.

1) Nygaard, S.; Hansen, S. W.; Huffman, J. C.; Jensen, F.; Flood, A. H.; Jeppesen, J. O. *J. Am. Chem. Soc.*, **2007**, *129*, 7354–7363. 2) Fahrenbach, A. C.; Barnes, J. C.; Lia, H.; Benítezc, D.; Basuraya, A. N.; Fanga, L.; Suea, C. H.; Barina, G.; Deya, S. K.; Goddard III, W. A.; Stoddart, J. F. *Proc. Natl. Acad. Sci. U. S. A.*, **2011**, *108*, 20416–20421. Nygaard, S.; Leung, K. C. F.; Aprahamian, I.; Ikeda, T.; Saha, S.; Laursen, B. W.; Kim, S. Y.; Hansen, S. W.; Stein, P. C.; Flood, A. H.; Stoddart, J. F.; Jeppesen, J. O. *J. Am. Chem. Soc.*, **2007**, *129*, 960–970.
 Andersen, S. S.; Jensen, M.; Sørensen, A.; Miyazaki, E.; Takimiya, K.; Laursen, B. W.; Flood, A. H.; Jeppesen, J. O. *Chem. Commun.*, **2012**, *48*, 5157–5159.