Probing the Role of Glycol Chain Lengths in π-Donor-Acceptor [2]Pseudorotaxanes Based on Monopyrrolo-Tetrathiafulvalene and Cyclobis(paraquat-*p*-phenylene)

<u>Rikke Kristensen, Sissel S. Andersen, Gunnar Olsen, and Jan O. Jeppesen</u> University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

Aim of the Project

A homologous series of *N*-substituted monopyrrolotetrathiafulvalenes (MPTTF), only differing in the number of ethyleneoxy units were synthesized. These formed [2]pseudorotaxanes upon mixing with cyclobis(paraquat*p*-phenylene) (CBPQT⁴⁺). The resulting [2]pseudorotaxanes were investigated in order to probe the role of the glycol chain lengths on the complexation between **1**– **5** and CBPQT⁴⁺. [1]

¹H NMR Spectroscopic Studies

UV-Vis-NIR Studies

Linear plots of 1000 $c A^{-1}$ against $A^{-1/2}$ for a 1:1 mixture of CBPQT⁴⁺ and MPTTF derivative **1** (blue line) and **3** (black line).

Binding Constants (K_a Values) and Derived Free Energies of Complexation (ΔG°) between the MPTTF Derivatives **1–5** and CBPQT⁴⁺ Determined by

Partial ¹H NMR spectra (400 MHz) recorded in CD_3CN (c = 1.5 mM) at 298 K of CBPQT⁴⁺, the MPTTF derivatives **1–5**, and equilibrated solutions containing **1–5** mixed with equimolar amounts of CBPQT⁴⁺.

UV-Vis-NIR Absorption Spectroscopy at 298 K in MeCN.

	λ_{max}	data	correlation	<i>K</i> _a (M ⁻¹)	ΔG° (kcal
compound	(nm)	points	coefficient		mol ⁻¹)
1	877	24	0.960	33000 ± 4000	-6.2 ± 0.1
2	854	28	0.987	41000 ± 4000	-6.3 ± 0.1
3	854	27	0.991	68000 ± 8000	-6.6 ± 0.1
4	856	28	0.986	64000 ± 8000	-6.6 ± 0.1
5	854	29	0.999	63000 ± 7000	-6.6 ± 0.1

Molecular Modelling and Cyclic Voltammetry

M06-L/6-31G^{**} geometry optimized superstructure of the [2]pseudorotaxane

Conclusions

- The MPTTF-derivatives 1–5 show similar redox potentials, so the change in binding constants is not ascribed to come from a change in electron donor properties
- The [2]pseudorotaxanes 1–5⊂CBPQT⁴⁺ show a trend towards higher binding energy, the longer the glycol chain.
 The biggest change in binding energy is seen for compounds 2 and 3
- Investigations suggest that hydrogen bonds can form between the first and second oxygen atoms and CBPQT⁴⁺ in the [2]pseudorotaxanes, providing an extra stabilization of $\Delta G^{\circ} = -0.3$ kcal mol⁻¹ to the [2]pseudorotaxanes

3 \subset CBPQT⁴⁺ (solvent corrected, MeCN) shown at two different angles. The MPTTF unit is colored green and the CBPQT⁴⁺ ring is blue, whereas carbon and oxygen atoms in the glycol chain are colored gray and red, respectively.

The first $(E_{1/2}^{-1})$ and second $(E_{1/2}^{-2})$ redox potentials for the MPTTF derivatives **1–5** obtained by cyclic voltammetry (CV) at 298 K in MeCN.

Compound	$E_{1/2}^{1}(V)$	$E_{1/2}^{2}$ (V)
1	+0.030	+0.400
2	+0.025	+0.415
3	+0.020	+0.415
4	+0.020	+0.415
5	+0.020	+0.415

[1] Kristensen, R.; Andersen, S. S.; Olsen, G.; Jeppesen, J. O., J. Org. Chem., 2017, 82, 1371-1379.